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Motivation
Principal matrix feature (PMaF): a single vector 

summarising a data matrix.
● Useful for feature representation with a lower 

dimension (a vector)
● Better and possibly faster solutions that are 

constrained on a sphere
● Differentiable for end-to-end learning
● Implicit differentiation [1] with higher running speed 

and lower hardware memory requirements than 
unrolling the forward optimization iteration [2] or 
without exploited structures [3]

1.  Least Squares on Sphere (LESS)

Iterative optimization:
1. Projected gradient descent (PGD)
2. + Direction weight (DW)

3. + Riemannian manifold (RM)

4. + Backtracking line search (BLS)

5. + Tangent weight decay (TWD)

2. Implicit Eigen Decomposition (IED)

Iterative optimization:
1. Power iteration (PI)

2. Simultaneous iteration (SI)

➤ Solution consistency in iterations
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Implicit differentiation of the learning loss over inputs using DDN 
[1] and exploited structures [3]:

Improvements on LESS Solvers

Table 1. Effectiveness on 1,000 
random Gaussian samples. “In” 
and “Out”: failed cases inner and 
outer of the sphere respectively. A 
case is failed when the solution 
update reaches 100 iterations, 
“Imp.”: the number of cases with 
energy no greater than SciPy. 
Problem sizes, m-n for the input 
matrix, are 2-2 (282 inner and 718 
outer), 64-32 (555 inner and 445 
outer), and 1024-256 (all inner).

Figure 1. Iterative optimization in LESS. Each row is a sample with 6 methods. “blue dash”: the least squares function; “red solid”: the sphere 
constraints; “green solid”: solution updates before and after Riemannian projection; “green dot-dash”: the least squares function with the final 
solution; “red dot”: the initial solution; “black star”: the final solution, not always the optimal. Ours (the last two columns) require much fewer 
iterations than the others for the optimal solution with comparable fixed point distance (FPD).
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● Two deep declarative layers for PMaF, namely LESS and IED, for 
end-to-end learning

● Overall better and faster (for regularized matrices in IED) solutions 
using iterative optimization

● Efficient and implicit differentiation with exploited matrix structures
● Code available https://github.com/anucvml/ddn.git

Improvements on IED Solvers

Figure 2. Accuracy evaluation using eigen distance and 
FPD (float32). (a) Symmetric and (b) non-symmetric 
matrices, sampled from the Normal distribution with 
activation. (c) Matrices from a pretrained ResNet50 with  
symmetric (top two rows) and non-symmetric (bottom 
two rows) matrices. Metrics are the less the better.
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Improvements on Backward Efficiency
Table 2. Backward speedup of LESS with exploited structures. Numbers are 
averaged over 100 samples. “PGD+RM+TWD” is used for LESS. “Speedup” is 
(“AutoDiff”-“LESS”)/“LESS”, “AutoDiff” from Scipy solver.

Figure 3. IED evaluation on symmetric Gaussian matrices with absolute 
activation. “fwd”: forward pass; “bwd”: backward pass; “AutoDiff”: PyTorch 
eigh(); “PI”: power iteration; “SI”: simultaneous iteration; “unroll”: unrolling the 
forward iteration via PyTorch autodiff mechanism; “J”: autodiff Jacobian without 
exploited structure; “E”: ours with exploited structure. Best suggestions are 
highlighted with green color considering the overall precision in Fig. 2 and 
computational requirements. More results on non-symmetric matrices and 
different data types are in the Appendix.

(a) GPU Time (second). Numbers are rescaled by log10.

    (b) GPU Memory (MB). Numbers are rescaled by log10.


