
PMaF: Deep Declarative Layers for
Principal Matrix Features

Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators

24-29 July, 2023,
Honolulu, Hawaii Zhiwei Xu, Hao Wang, Yanbin Liu, Stephen Gould

zhiwei.xu@anu.edu.au

Motivation
Principal matrix feature (PMaF): a single vector

summarising a data matrix.
● Useful for feature representation with a lower

dimension (a vector)
● Better and possibly faster solutions that are

constrained on a sphere
● Differentiable for end-to-end learning
● Implicit differentiation [1] with higher running speed

and lower hardware memory requirements than
unrolling the forward optimization iteration [2] or
without exploited structures [3]

1. Least Squares on Sphere (LESS)

Iterative optimization:
1. Projected gradient descent (PGD)
2. + Direction weight (DW)

3. + Riemannian manifold (RM)

4. + Backtracking line search (BLS)

5. + Tangent weight decay (TWD)

2. Implicit Eigen Decomposition (IED)

Iterative optimization:
1. Power iteration (PI)

2. Simultaneous iteration (SI)

➤ Solution consistency in iterations

Two Deep Declarative Layers

Deep Declarative Networks as Backward

IED-implicit function
theorem (IFT)

Objective function

Implicit gradients

IEDVanilla

With exploited structures

Further

LESS

With exploited structures

Vanilla

Implicit differentiation of the learning loss over inputs using DDN
[1] and exploited structures [3]:

Improvements on LESS Solvers

Table 1. Effectiveness on 1,000
random Gaussian samples. “In”
and “Out”: failed cases inner and
outer of the sphere respectively. A
case is failed when the solution
update reaches 100 iterations,
“Imp.”: the number of cases with
energy no greater than SciPy.
Problem sizes, m-n for the input
matrix, are 2-2 (282 inner and 718
outer), 64-32 (555 inner and 445
outer), and 1024-256 (all inner).

Figure 1. Iterative optimization in LESS. Each row is a sample with 6 methods. “blue dash”: the least squares function; “red solid”: the sphere
constraints; “green solid”: solution updates before and after Riemannian projection; “green dot-dash”: the least squares function with the final
solution; “red dot”: the initial solution; “black star”: the final solution, not always the optimal. Ours (the last two columns) require much fewer
iterations than the others for the optimal solution with comparable fixed point distance (FPD).

Conclusion References
[1] Gould, S., Hartley, R., and Campbell, D. Deep declarative
networks, TPAMI, 2022.
[2] Boyd, S. and Vandenberghe, L. Convex optimization. Cambridge
University Press, 2004.
[3] Gould, S., Campbell, D., Ben-Shabat, I., Koneputugodage, C. H.,
and Xu, Z. Exploiting problem structure in deep declarative
networks: Two case studies, AAAI Workshop on OTSDM, 2022.

● Two deep declarative layers for PMaF, namely LESS and IED, for
end-to-end learning

● Overall better and faster (for regularized matrices in IED) solutions
using iterative optimization

● Efficient and implicit differentiation with exploited matrix structures
● Code available https://github.com/anucvml/ddn.git

Improvements on IED Solvers

Figure 2. Accuracy evaluation using eigen distance and
FPD (float32). (a) Symmetric and (b) non-symmetric
matrices, sampled from the Normal distribution with
activation. (c) Matrices from a pretrained ResNet50 with
symmetric (top two rows) and non-symmetric (bottom
two rows) matrices. Metrics are the less the better.

(a)

(b)

(c)

Improvements on Backward Efficiency
Table 2. Backward speedup of LESS with exploited structures. Numbers are
averaged over 100 samples. “PGD+RM+TWD” is used for LESS. “Speedup” is
(“AutoDiff”-“LESS”)/“LESS”, “AutoDiff” from Scipy solver.

Figure 3. IED evaluation on symmetric Gaussian matrices with absolute
activation. “fwd”: forward pass; “bwd”: backward pass; “AutoDiff”: PyTorch
eigh(); “PI”: power iteration; “SI”: simultaneous iteration; “unroll”: unrolling the
forward iteration via PyTorch autodiff mechanism; “J”: autodiff Jacobian without
exploited structure; “E”: ours with exploited structure. Best suggestions are
highlighted with green color considering the overall precision in Fig. 2 and
computational requirements. More results on non-symmetric matrices and
different data types are in the Appendix.

(a) GPU Time (second). Numbers are rescaled by log10.

 (b) GPU Memory (MB). Numbers are rescaled by log10.

