Honolulu, Hawaii

Australian PMaF: Deep Declarative Layers for
National University

Workshop on Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators

Motivation

Principal matrix feature (PMaF): a single vector summarising a data matrix

- Useful for feature representation with a lower dimension (a vector)
- Better and possibly faster solutions that are constrained on a sphere
- Differentiable for end-to-end learning
- Implicit differentiation [1] with higher running speed and lower hardware memory requirements than unrolling the forward optimization iteration [2] or without exploited structures [3]

Two Deep Declarative Layers 1. Least Squares on Sphere (LESS)

$$
\begin{aligned}
& \text { Given } \mathbf{A} \in \mathbb{R}^{m \times n} \text { and } \mathbf{b} \in \mathbb{R}^{m}, \\
& \operatorname{minimize}_{\mathbf{u} \in \mathbb{R}^{n}} f(\mathbf{A}, \mathbf{b}, \mathbf{u}) \triangleq \frac{1}{2}\|\mathbf{A u}-\mathbf{b}\|^{2} \\
& \text { subject to }\|\mathbf{u}\|^{2}=1 .
\end{aligned}
$$

Iterative optimization:

1. Projected gradient descent (PGD)
2. + Direction weight (DW)

$$
\begin{gathered}
w_{t}=1-\mathrm{S}_{c}\left(\mathbf{d}_{t}, \mathbf{u}_{0}\right) \\
c(\mathbf{a}, \mathbf{b})=\mathbf{a}^{T} \mathbf{b} /(\|\mathbf{a}\|\|\mathbf{b}\|)
\end{gathered}, \mathbf{d}_{t}= \begin{cases}-\nabla £\left(\mathbf{u}_{t}\right) & \text { if }\left\|\mathbf{u}_{0}\right\| \geq 1 \\
\nabla f\left(\mathbf{u}_{t}\right) & \text { otherwise }\end{cases}
$$

3. + Riemannian manifold (RM)

$$
\operatorname{Proj}_{\mathrm{RM}}\left(-\nabla f\left(\mathbf{u}_{t}\right)\right)=\left(\mathbf{I}_{n}-\mathbf{u}_{t} \mathbf{u}_{t}^{T}\right)\left(-\nabla £\left(\mathbf{u}_{t}\right)\right)
$$

2. Implicit Eigen Decomposition (IED)

$$
\begin{aligned}
& \text { Given } \mathbf{A} \in \mathbb{R}^{m \times m}, \\
& \text { minimize } \\
& \text { subject to } \quad \mathrm{h}(\mathbf{u}) \triangleq \mathbb{R}^{m \times n} f(\mathbf{A}, \mathbf{u}) \triangleq-\operatorname{tr}\left(\mathbf{u}^{T} \mathbf{A} \mathbf{u}\right) \\
& \text { sur }
\end{aligned}
$$

Iterative optimization:

1. Power iteration (PI)

$$
\begin{gathered}
\mathbf{u}_{t+1}=\mathbf{A} \mathbf{u}_{t} /\left\|\mathbf{A} \mathbf{u}_{t}\right\| \\
\mathbf{y}=\mathbf{u}_{K} \quad \text { and } \quad \lambda=\mathbf{y}^{T} \mathbf{A y}
\end{gathered}
$$

2. Simultaneous iteration (SI)

$$
\begin{gathered}
\left\{\mathbf{Q}_{t}, \mathbf{R}_{t}\right\}=Q R\left(\mathbf{x}_{t}\right) \text { and } \mathbf{x}_{t+1}=\mathbf{x}_{t} \mathbf{Q}_{t} \\
\mathbf{y}=\text { the component of } \mathbf{Q}_{K} \text { to } \lambda=\max \left(\mathbf{R}_{K}\right)
\end{gathered}
$$

> Solution consistency in iterations

Historical: $\quad \mathbf{u}_{t} \leftarrow \mathrm{~V}\left(\mathbf{u}_{t}, \mathbf{u}_{t-1}\right) \mathbf{u}_{t}$
 Hard-coded: $\mathbf{y} \leftarrow \mathrm{V}(\mathbf{y}, \mathbf{r}) \mathbf{y}$
 $\mathrm{V}(\mathbf{a}, \mathbf{b})=\operatorname{Sign}\left(\mathbf{a}^{T} \mathbf{b}\right)$ if $(\mathbf{a} \notin \mathbf{b})$ and otherwise 1

Deep Declarative Networks as Backward

Implicit differentiation of the learning loss over inputs using DDN [1] and exploited structures [3]:

$$
\nabla_{X} L=\nabla_{Y} L\left(\mathcal{H}^{-1} \mathcal{A}^{T}\left(\mathcal{H H}^{-1} \mathcal{A}^{T}\right)^{-1} \mathcal{A}-\mathbf{I}_{n}\right) \mathcal{H}^{-1} \mathcal{B}
$$

LESS Vanilla	$\begin{aligned} & \text { Vanilla } \quad \text { IED } \\ & \mathcal{A}=2 \mathbf{y}^{T} \in \mathbb{R}^{1 \times m} \end{aligned}$		
$\mathcal{A}=2 \mathbf{y}^{T} \in \mathbb{R}^{1 \times n}$,	$\mathcal{B}=\nabla_{X Y}^{2} £(\mathbf{A}, \mathbf{y}) \in \mathbb{R}^{m \times(m \times m)}$		
$\mathcal{B}=\nabla_{X Y}^{2} \pm(\mathbf{A}, \mathbf{b}, \mathbf{y}) \in \mathbb{R}^{n \times(m \times n)}$	$\mathcal{H}=-\left(\mathbf{A}+\mathbf{A}^{T}\right)-2 \beta \mathbf{I}_{m} \in \mathbb{R}^{m \times m}$		
$\mathcal{H}=\mathbf{A}^{T} \mathbf{A}-2 \beta \mathbf{I}_{n} \in \mathbb{R}^{n \times n}$	$\beta=-\frac{1}{2} \mathbf{y}^{T}\left(\mathbf{A} \mathbf{y}+\mathbf{A}^{T} \mathbf{y}\right) \in \mathbb{R}$		
$\beta=\frac{1}{2} \mathbf{y}^{T} \mathbf{A}^{T}(\mathbf{A y}-\mathbf{b}) \in \mathbb{R}$	With exploited structures		
With exploited structures	$\begin{aligned} & \mathcal{B}_{i j k}=0, \quad \forall i, j, k \in \mathcal{M}, \\ & \mathcal{B}_{i j i} \leftarrow \mathcal{B}_{i j i}-\mathbf{y}_{j}, \quad \forall i, j \in \mathcal{M}, \\ & \mathcal{B} \leftarrow \mathfrak{\mathcal { B }},-\mathbf{v} . \quad \forall i \quad j \in \mathcal{M} \end{aligned}$		
$\begin{aligned} & \mathcal{B}_{i j}=\mathbf{A}_{\mathbf{i}} \mathbf{y}_{j}^{T}, \quad \forall i, j \in \mathcal{N}, \\ & \mathcal{B}_{i i} \leftarrow \mathcal{B}_{i i}+(\mathbf{A y}-\mathbf{b}), \quad \forall i \in \mathcal{N} . \end{aligned}$	$\mathcal{B}_{i i j} \leftarrow \mathcal{B}_{i i j}-\mathbf{y}_{j}, \quad \forall i, j \in \mathcal{M}$. Further $\nabla_{X} L=-\mathcal{K} \mathbf{y}^{T}-\mathbf{y} \mathcal{K}^{T}$.		
IED-implicit function	Implicit gradients		
theorem (IFT)	$\nabla_{X} \mathbf{y}=-\left(\nabla_{Y} £(\mathbf{A}, \mathbf{y})\right)^{-1} \nabla_{X} £(\mathbf{A}, \mathbf{y})$		
Objective functio	$\nabla_{X} L=\nabla_{Y} L \nabla_{X} \mathrm{y}=-\nabla_{Y} L \mathcal{H}^{-1} \mathcal{B}$		
Objective function $f(\mathbf{A}, \mathbf{y})=\mathbf{y}-\mathbf{A y} /\\|\mathbf{A y}\\|$	$\begin{aligned} & \mathcal{H}=\mathbf{I}_{m}-\left(\mathbf{I}_{m}-\mathbf{y y}^{T}\right) \mathbf{A} / \lambda, \\ & \mathcal{B}=-\left(\mathbf{I}_{m}-\mathbf{y y}^{T}\right) \mathbf{y}^{T} / \lambda . \end{aligned}$		

Improvements on LESS Solvers

Figure 1. Iterative optimization in LESS. Each row is a sample with 6 methods. "blue dash": the least squares function; "red solid": the sphere constraints; "green solid": solution updates before and after Riemannian projection; "green dot-dash": the least squares function with the final solution; "red dot": the initial solution; "black star": the final solution, not always the optimal. Ours (the last two columns) require much fewer iterations than the others for the optimal solution with comparable fixed point distance (FPD).
Table 1. Effectiveness on 1,000 random Gaussian samples. "In" \qquad BLS \quad TWD DW
 p. \uparrow MRE \downarrow and "Out". failed cases inner and case is failed when the solution case is failed when the solution
update reaches 100 iterations, update reaches 100 iterations,
"Imp.": the number of cases with "Imp.": the number of cases with
energy no greater than SciPy. energy no greater than SciPy. Problem sizes, m-n for the input matrix, are 2-2 (282 inner and 718 outer), 64-32 (555 inner and 445 (all inner).
outer), and 1024-256

Improvements on Backward Efficiency

Table 2. Backward speedup of LESS with exploited structures. Numbers are averaged over 100 samples. "PGD+RM+TWD" is used for LESS. "Speedup" is ("AutoDiff"-"LESS")/"LESS", "AutoDiff" from Scipy solver.

LESS")/LESS", "AutoDiff" from Scipy solver.					
	Size		$256 \times 8 \times 64$	Size $256 \times 16 \times 128$	
	Time (s)	Memory (MB)	Time (s)	Memory (MB)	
AutoDiff	4.44	65.22	8.64	519.32	
LESS	0.01	49.20	0.02	325.70	
Speedup	$\times 444 \uparrow$	$\times 0.33 \uparrow$	$\times 432 \uparrow$	$\times 0.59 \uparrow$	

Figure 3. IED evaluation on symmetric Gaussian matrices with absolute activation. "fwd": forward pass; "bwd": backward pass; "AutoDiff": PyTorch eigh(); "Pl": power iteration; "Sl": simultaneous iteration; "unroll": unrolling the forward iteration via PyTorch autodiff mechanism; " J ": autodiff Jacobian without exploited structure; " E ": ours with exploited structure. Best suggestions are highlighted with green color considering the overall precision in Fig. 2 and computational requirements. More results on non-symmetric matrices and computational requirements. More resul
different data types are in the Appendix.
different data types are in the Appendix

Conclusion

- Two deep declarative layers for PMaF, namely LESS and IED, for end-to-end learning
Overall better and faster (for regularized matrices in IED) solutions Overall better and faster
- Efficient and implicit differentiation with exploited matrix structures - Code available https://github.com/anucvml/ddn.git

References

[1] Gould, S., Hartley, R., and Campbell, D. Deep declarative networks, TPAMI, 2022.

