

Fast and Differentiable Message Passing on Pairwise Markov Random Fields

(Oral Presentation)

Zhiwei Xu^{1,2}, Thalaiyasingam Ajanthan¹, Richard Hartley¹

¹ Australian National University (ANU) and Australian Centre for Robotic Vision (ACRV) ² Data61, CSIRO, Canberra, Australia

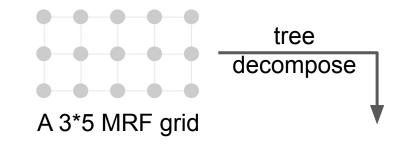
Problem

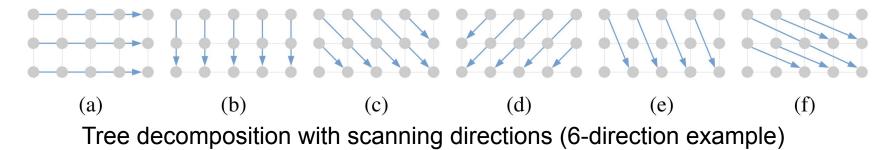
Limited Spread of **MRF** Optimization Algorithms in Deep Learning due to

- Hand-crafted model parameters
- Inferior optimization capability
- Non-differentiability
- Low computational efficiency

Background

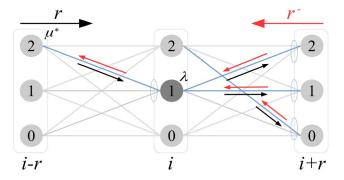
Markov Random Fields - 2D grids





Background

Max-A-Posteriori (MAP) message passing



Energy function:
$$E(\mathbf{x} \mid \boldsymbol{\Theta}) = \sum_{i \in \mathcal{V}} \theta_i(x_i) + \sum_{(i,j) \in \mathcal{E}} \theta_{i,j}(x_i, x_j)$$

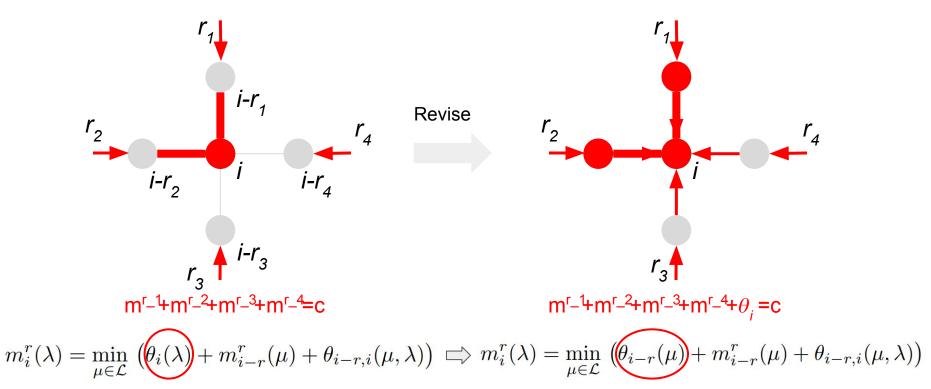
MAP message: $m_i^r(\lambda) = \min_{\mu \in \mathcal{L}} \left(\theta_{i-r}(\mu) + m_{i-r}^r(\mu) + \theta_{i-r,i}(\mu, \lambda) \right)$
MAP

Note: This is in contrast to marginal form, sum() or prod(), in Probabilistic Graph Model (PGM).

Solution 1: Iterative Semi-Global Matching Revised (ISGMR)

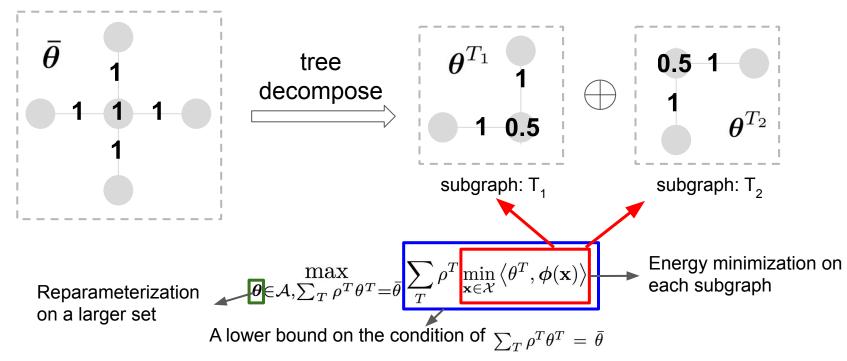
- Revision of SGM
- Iterative Energy Minimization
- Massive Parallelism over Trees and Directions

ISGMR: from SGM to our revision



ISGMR: message updates and iteration

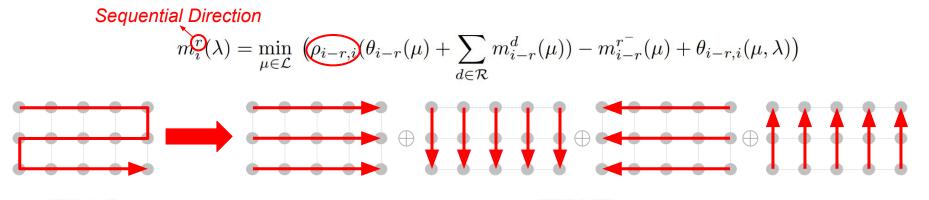
Introduction of TRWS: a SOTA energy minimization algorithm



Reference: Convergent Tree-reweighted Message Passing for Energy Minimization, PAMI, 2006

Solution 2: Parallel Tree-Reweighted Message Passing (TRWP)

- Breaking into Individual Trees from a Single-Chain Tree of TRWS
- Speed-up by Parallelism
- Maintaining High Optimization Ability

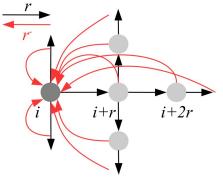


Differentiability

The differentiability involves the accumulated gradients of

- Messages
- Unary potentials Pairwise potentials (optional)

Achieved by unrolling the message updates in the forward propagation.



Gradient accumulation at node *i*

Differentiability

Al	Algorithm 3: Backpropagation of ISGMR								
I	Input: Partial energy parameters $\{\theta_{i,j}\}$, gradients of final costs $\nabla \mathbf{c} = \{\nabla c_i(\lambda)\}$, set of								
	nodes \mathcal{V} , edges \mathcal{E} , directions \mathcal{R} , indices $\{p_{k,i}^r(\lambda)\}, \{q_{k,i}^r\}$, iteration number K .								
	We replace $\nabla m^{r,k+1}$ by $\nabla \hat{m}^r$ and $\nabla m^{r,k}$ by ∇m^r for simplicity.								
0	Dutput: Gradients $\{\nabla \theta_i, \nabla \theta_{i,j}(\cdot, \cdot)\}$.								
1 \	$7\mathbf{m}^{\mathbf{r}} \leftarrow \nabla \Theta_{\mathbf{i}} \leftarrow \nabla \mathbf{c}, \nabla \Theta_{\mathbf{i},\mathbf{j}} \leftarrow 0$	⊳back Eq. (7)							
2 \	$7\hat{\mathbf{m}}^{\mathbf{r}} \leftarrow \nabla \mathbf{m}^{\mathbf{r}}$	⊳back message updates							
3 f	or iteration $k \in \{K,, 1\}$ do								
4	$ \nabla \mathbf{m^r} \leftarrow 0$	⊳zero-out							
5	forall directions $r \in \mathcal{R}$ do	⊳parallel							
6	forall scanlines t in direction r do	⊳parallel							
7	for node i in scanline t do	⊳sequential							
8	$\lambda^* \leftarrow q_{k,i}^r \in \mathcal{L}$	⊳extract index							
9	$ \nabla \hat{m}_i^r(\lambda^*) = \sum_{\lambda \in \mathcal{L}} \nabla \hat{m}_i^r(\lambda) $	⊳back Eq. (5)							
10	for label $\lambda \in \mathcal{L}$ do								
11	$ \qquad \qquad$	⊳extract index							
12	$\nabla \theta_{i-r}(\mu^*) \mathrel{+}= \nabla \hat{m}_i^r(\lambda)$	⊳back Eq. (9)							
13	$\nabla \hat{m}_{i-r}^r(\mu^*) \mathrel{+}= \nabla \hat{m}_i^r(\lambda)$								
14	$ \nabla m_{i-r}^d(\mu^*) \mathrel{+}= \nabla \hat{m}_i^r(\lambda), \forall d $	$\in \mathcal{R} \setminus \{r,r^-\}$							
15	$\nabla \theta_{i-r,i}(\mu^*,\lambda) \mathrel{+}= \nabla \hat{m}_i^r(\lambda)$								
16	$ abla \hat{\mathbf{m}}^r \leftarrow 0$	⊳zero-out							
17	$\nabla \mathbf{m}^{\mathbf{r}} += \nabla \hat{\mathbf{m}}^{\mathbf{r}}$	⊳gather history gradients							
18	$ abla \hat{\mathbf{m}}^{\mathbf{r}} \leftarrow abla \mathbf{m}^{\mathbf{r}}$	⊳back message updates after iteration							

Alg	Algorithm 4: Backpropagation of TRWP									
I	Input: Partial energy parameters $\{\theta_{i,j}\}$, gradients of final costs $\nabla \mathbf{c} = \{\nabla c_i(\lambda)\}$, tree									
	decomposition coefficients $\{\rho_{i,j}\}$, set of nodes \mathcal{V} , edges \mathcal{E} , directions \mathcal{R} , indices									
	$\{p_{k,i}^r(\lambda)\}, \{q_{k,i}^r\}$, iteration number K.									
0	Dutput: Gradients $\{\nabla \theta_i, \nabla \theta_{i,j}(\cdot, \cdot)\}$.									
1 \	$7\mathbf{m}^{\mathbf{r}} \leftarrow \nabla \mathbf{\Theta}_{\mathbf{i}} \leftarrow d\mathbf{c}, d\mathbf{\Theta}_{\mathbf{i},\mathbf{j}} \leftarrow 0$	⊳back Eq. (7)								
2 fe	or iteration $k \in \{K,, 1\}$ do									
3	for direction $r \in \mathcal{R}$ do	⊳sequential								
4	forall scanlines t in direction r do	⊳parallel								
5	for node i in scanline t do	⊳sequential								
6	$ \lambda^* \leftarrow q_{k,i}^r \in \mathcal{L}$	⊳extract index								
7	$\nabla m_i^r(\lambda^*) = \sum_{\lambda \in \mathcal{L}} \nabla m_i^r(\lambda)$	⊳back Eq. (5)								
8	for label $\lambda \in \mathcal{L}$ do									
9	$\mid \mid \mid \mu^* \leftarrow p^r_{k,i}(\lambda) \in \mathcal{L}$	⊳extract index								
10	$ \nabla \theta_{i-r}(\mu^*) + = \rho_{i-r,i} \nabla m_i^r(\lambda) $	⊳back Eq. (11)								
11	$\nabla m_{i-r}^d(\mu^*) \mathrel{+}= \rho_{i-r,i} \nabla m_i^r(\lambda), \forall d \in \mathcal{R}$									
12	$\nabla m_{i-r}^{r^-}(\mu^*) = \nabla m_i^r(\lambda)$									
13	$ \nabla \theta_{i-r,i}(\mu^*,\lambda) \mathrel{+}= \nabla m_i^r(\lambda) $									
14	$ abla \mathbf{m}^r \leftarrow 0$	⊳zero-out								

Our Results

• Effectiveness of Optimization

Stereo vision and image denoising

• **Efficiency** of Running Time

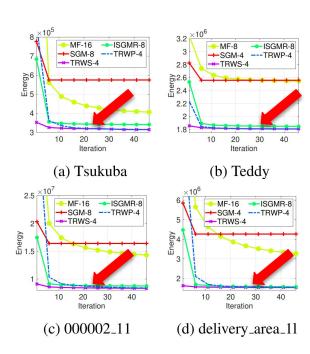
Forward and backward propagation time

• **Evaluation** on Deep Learning

Semantic segmentation on PASCAL VOC 2012

Effectiveness (Optimization-Energy Minimization)

• Task: Stereo Vision



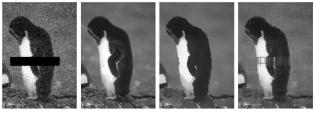
Datasets:		Midd	lebury	, 	KITTI2	2015	ETH3D	
Method	Tsul	kuba	Teo	ldy	0000	02_11	delivery_area_11	
Mictilou	1 iter	50 iter	1 iter	50 iter	1 iter	50 iter	1 iter	50 iter
MF-4	3121704	1620524	3206347	2583784	82523536	44410056	19945352	9013862
SGM-4	873777	644840	2825535	2559016	24343250	18060026	5851489	4267990
TRWS-4	352178	<u>314393</u>	1855625	1807423	9109976	8322635	1628879	1534961
ISGMR-4 (ours)	824694	637996	2626648	1898641	22259606	12659612	5282024	2212106
TRWP-4 (ours)	869363	314037	2234163	1806990	40473776	8385450	9899787	1546795
MF-8	2322139	504815	3244710	2545226	61157072	18416536	16581587	4510834
SGM-8	776706	574758	2868131	2728682	20324684	16406781	5396353	4428411
ISGMR-8 (ours)	684185	340347	2532071	1847833	17489158	8753990	4474404	1571528
TRWP-8 (ours)	496727	348447	1981582	1849287	18424062	8860552	4443931	1587917
MF-16	1979155	404404	3315900	2622047	46614232	14192750	13223338	3229021
SGM-16	710727	587376	2907051	2846133	18893122	16791762	5092094	4611821
ISGMR-16 (ours)	591554	377427	2453592	1956343	15455787	9556611	3689863	1594877
TRWP-16 (ours)	402033	<u>396036</u>	1935791	1976839	11239113	<u>9736704</u>	2261402	1630973

Method with the lowest energy is the best

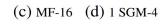
Effectiveness (Optimization-Energy Minimization)

• Task: Image Denoising

Method	Penguin House				
MF-4	46808	50503			
SGM-4	31204	66324			
TRWS-4	<u>15361</u>	<u>37572</u>			
ISGMR-4 (ours)	16514	37603			
TRWP-4 (ours)	15358	37552			
MF-8	21956	47831			
SGM-8	37520	76079			
ISGMR-8 (ours)	15899	39975			
TRWP-8 (ours)	<u>16130</u>	40209			
MF-16	20742	55513			
SGM-16	47028	87457			
ISGMR-16 (ours)	17035	46997			
TRWP-16 (ours)	<u>17516</u>	<u>47825</u>			



(a) noisy (b) GT



(e) SGM-4 (f) TRWS-4 (g) ISGMR-8 (h) TRWP-4

Efficiency (Computational Complexity)

• Min-Sum Form Message Passing

Method	PyTorch CPU PyTorch GI		ch GPU	C++ single		C++ multiple		CUDA (ours)		Speed-up PyT/CUDA			
wieniou	32	96	32	96	32	96	32	96	32	96	32	96	
TRWS-4	-	-	-	-	1.95	13.30	-	-	-	-	-	-	
ISGMR-4	1.43	11.70	0.96	1.13	3.23	25.19	0.88	5.28	0.03	0.15	32×	8×	least
ISGMR-8	3.18	24.78	1.59	1.98	8.25	71.35	2.12	15.90	0.07	0.27	$23\times$	$7\times$	
ISGMR-16	7.89	52.76	2.34	4.96	30.76	273.68	7.70	62.72	0.13	0.53	18×	9×	
TRWP-4	1.40	11.74	0.87	1.08	1.84	15.41	0.76	4.46	0.03	0.15	29×	7×	
TRWP-8	3.19	24.28	1.57	1.98	6.34	57.25	1.88	14.22	0.07	0.27	22×	7×	
TRWP-16	7.86	51.85	2.82	5.08	28.93	262.28	7.41	60.45	0.13	0.52	22×	10×	

(a) Forward Pass Time

(b) Backpropagation Time

	•						
Method	PyTor	ch GPU	CUDA	(ours)	Speed-up I		
Wiethou	32	96	32	96	32	96	least
ISGMR-4	7.38	21.48	0.01	0.03	738×	716×	
ISGMR-8	18.88	55.92	0.02	0.07	944×	799×	
ISGMR-16	58.23	173.02	0.06	0.18	971×	961×	
TRWP-4	7.35	21.45	0.01	0.02	735×	1073×	
TRWP-8	18.86	55.94	0.02	0.06	943×	932×	
TRWP-16	58.26	172.95	0.06	0.16	971×	$1081 \times$	

Evaluation (Deep Learning)

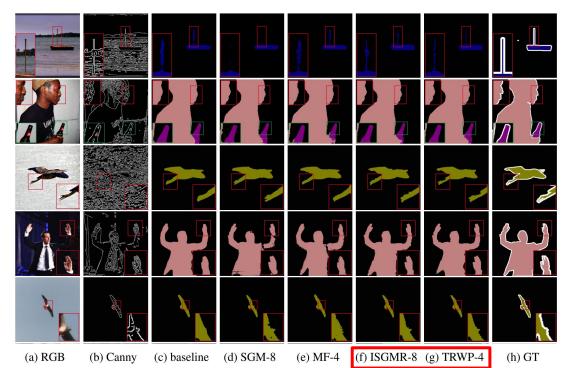
• Task: Semantic Segmentation (PASCAL VOC 2012 Dataset)

(a) term weight for TRWP-4

Method	λ	mIoU (%)
+TRWP-4	1	79.27
+TRWP-4	10	79.53
+TRWP-4	20	79.65
+TRWP-4	30	79.44
+TRWP-4	40	79.60

(b) full comparison

Method	$\boldsymbol{\lambda}$	mIoU (%)
DeepLabV3+ 40	-	78.52
+SGM-8 1	5	78.94
+MF-4 6	5	77.89
+ISGMR-8 (ours)	5	78.95
+TRWP-4 (ours)	20	79.65



Summary

We introduce two message passing algorithms, ISGMR and TRWP, which are

- Fast and Achievable on GPU
- Differentiable
- For Optimization
- For Deep Learning

Code of Our MPLayers:

https://github.com/zwxu064/MPLayers.git

-- End --