

RANP: Resource Aware Neuron Pruning at Initialization for 3D CNNs

(Oral Presentation)

Zhiwei Xu^{1,3}, Thalaiyasingam Ajanthan¹, Vibhav Vineet², Richard Hartley¹

¹ Australian National University (ANU) and Australian Centre for Robotic Vision (ACRV) ² Microsoft Research, Redmond, USA ³ Data61, CSIRO, Canberra, Australia

Problem Setup

Generally, 3D CNNs suffer from

- Expensive computational complexity
- High requirement of GPU memory
- Infeasible for large-scale applications
- Unfriendly to resource-limited devices

=> Network pruning is a popular and high-efficient approach.

Existing Solutions

Possible adoptions from 2D CNN pruning methods

- Parameter pruning: sparse filters but no significant resource reductions
- Neuron pruning: prune-retrain manner and at test time

Existing 3D CNN pruning methods

- Sparse convolution: specified to sparse data, not generalized to dense data
- Neuron / channel pruning: slow due to the prune-retrain manner

• Large reductions of FLOPS and memory of 3D CNNs

50%-95% FLOPs reduction and 35%-80% memory reduction

- **Single-shot** pruning at initialization
- **Scalability** by pruning with a small spatial size and training with a large one
- Transferability by pruning on a dataset and training on another one
- Lightweight training on a single GPU
- **Fast training** with increased batch size
- Easy adaption to 2D CNNs

Brief introduction of SNIP (aims at 2D parameter pruning)

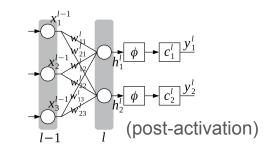
Parameter importance by connection sensitivity with relaxed binary masks mini-batch Objective function: $\min_{\mathbf{c}, \mathbf{w}} L(\mathbf{c} \odot \mathbf{w}; \mathcal{D}) = \min_{\mathbf{c}, \mathbf{w}} \frac{1}{S} \sum_{i=1}^{S} \ell(\mathbf{c} \odot \mathbf{w}, (\mathbf{x}_i, \mathbf{y}_i)),$ parameter number s.t. $\mathbf{w} \in \mathbb{R}^m$, $\mathbf{c} \in \{0, 1\}^m$ $\|\mathbf{c}\|_0 \le \kappa$ masks on connection sensitivity Parameter importance: $s_j = \frac{|g_j(\mathbf{w}; \mathcal{D})|}{\sum_{k=1}^m |g_k(\mathbf{w}; \mathcal{D})|}$, where $g_j(\mathbf{w}; \mathcal{D}) = \frac{\partial L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})}{\partial c_j}\Big|_{\mathbf{c}=1}$

Then, retain top-k parameters by top-k largest parameter importance.

Drawbacks of SNIP for 3D CNNs

- Sparse filters by pruning parameters cannot yield significant resource reductions while huge resource consumption tackles the usage of 3D CNNs.
- A sparse filter cannot reduce the number of features of hidden layers, which cause main memory consumption in 3D CNNs, unless all parameters in a neuron are pruned which is uncertain.

Neuron importance



Neuron function with activation: $\mathbf{x}^{l} = \phi(\mathbf{h}^{l})$, where $\mathbf{h}^{l} = \mathbf{W}^{l}\mathbf{x}^{l-1} + \mathbf{b}^{l}$ neuron number at layer *l* With a neuron mask (post-activation): $\mathbf{x}^{l} = \mathbf{c}^{l} \odot \phi(\mathbf{h}^{l})$, where $\mathbf{c}^{l} \in \{0, 1\}^{N_{l}}$, $\forall l \in \mathcal{K}$

vanilla NI:
$$s_{u}^{l} = \left| \frac{\partial L(\mathbf{c}, \mathbf{w}; \mathcal{D})}{\partial c_{u}^{l}} \right|_{\mathbf{c}=\mathbf{1}} \right|, \text{ where } \frac{\partial L(\mathbf{c}, \mathbf{w}; \mathcal{D})}{\partial c_{u}^{l}} \Big|_{\mathbf{c}=\mathbf{1}} = \sum_{v=1}^{N_{l-1}} \left. \frac{\partial L(\mathbf{c} \odot \mathbf{w}; \mathcal{D})}{\partial c_{uv}^{l}} \right|_{\mathbf{c}=\mathbf{1}}$$

weighted NI:
$$\tilde{s}_u^l = \frac{\max_{k=1}^K \bar{s}^k}{\bar{s}^l} s_u^l$$
, where $\bar{s}^k = \frac{1}{N_k} \sum_{u=1}^{N_k} s_u^k$, $\forall k \in \mathcal{K}$

resource aware NI: $\hat{s}_{u}^{l} = (1 + \lambda \operatorname{softmax}(-\tau)) \tilde{s}_{u}^{l} = \left(1 + \lambda \frac{e^{-\tau_{l}}}{\sum_{k=1}^{K} e^{-\tau_{k}}}\right) \tilde{s}_{u}^{l}$ layerwise resource constraint (FLOPs or memory)

We evaluated RANP on two 3D tasks

• 3D semantic segmentation

Datasets: sparse data: ShapeNet (sparse point clouds)

dense data: BraTS'18 (medical images)

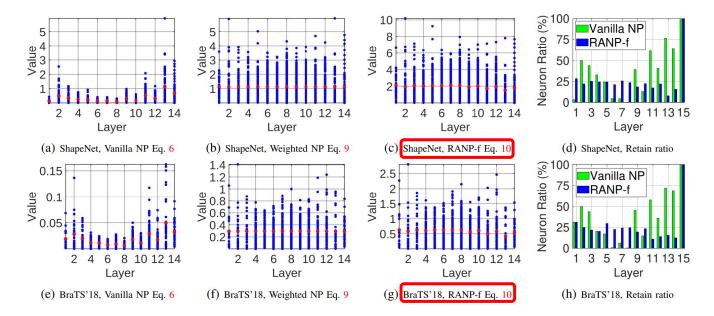
Models: 3D-UNets (15-layer and 23-layer)

• Video action classification

Dataset: UCF101

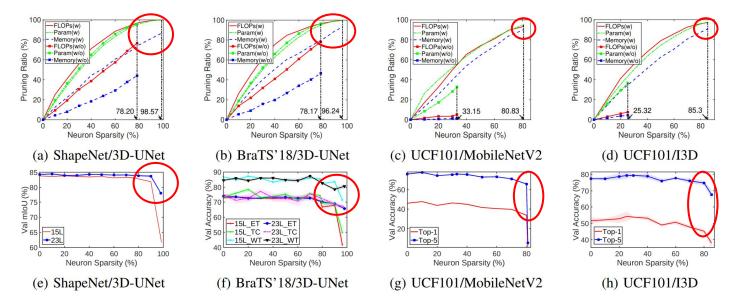
Models: MobileNetV2 and I3D

• Effects of resource constraint on balancing layerwise neuron importance



From vanilla NP to weighted NP to RANP NP (weighted NP with resource constraint of FLOPs).

• Pruning ability & neuron sparsity



With minimal accuracy loss, much more resources can be reduced with (w) reweighting by RANP-f than without (w/o) it by vanilla NP. (a)-(d) are resources reductions (w) and (w/o) reweighting; (e)-(h) are accuracy by pruning sparsity.

• Strong pruning ability of RANP compared with others

Dataset	Model		Manner	Sparsity(%)	Param(MB)	GFLOPs	Memory(MB)		Metrics(%)	
ShapeNet [10]			11. (11.1.5c)						mIoU	
		ours	Full[5]	0	62.26	237.85	997.00		83.79±0.21	
	3D-UNet		SNIP[18] NP	98.98	5.31 (91.5↓)	126.22 (46.9↓)	833.20 (16.4↓)		83.70 ± 0.20	
			Random NP		3.05 (95.1↓)	10.36 (95.64)	267.95 (73.1↓)		82.90 ± 0.19	
			Layer-wise NP		2.99 (95.2↓)	11.63 (95.1↓)	296.22 (70.3↓)		83.25 ± 0.14	
			Vanilla NP	78.24	2.54 (95.9↓)	55.69 (76.6↓)	557.32 (44.1↓)		83.26 ± 0.14	
			Weighted NP		2.97 (95.2↓)	12.06 (94.9↓)	301.56 (69.8↓)		83.12 ± 0.09	
			RANP-m		3.39 (94.6↓)	6.68 (97.2↓)	214.95 (78.4↓)		82.35 ± 0.24	
			RANP-f		2.94 (95.3↓)	7.54 (96.8↓)	262.66 (73.7↓)		83.07±0.22	
	3D-UNet	ours						ET	TC	WT
			Full[5]	0	15.57	478.13	3628.00	72.96 ± 0.60	73.51 ± 1.54	86.79±0.35
			SNIP[18] NP	98.88	1.09 (93.0↓)	233.11 (51.2↓)	2999.64 (17.3↓)	73.33 ± 1.89	71.98 ± 2.15	86.44±0.39
			Random NP		0.75 (95.2↓)	22.59 (95.3↓)	817.59 (77.5↓)	67.27 ± 0.99	71.62 ± 1.20	74.16 ± 1.33
BraTS'18			Layer-wise NP		0.75 (95.2↓)	24.09 (95.0↓)	836.88 (77.0↓)	69.74±1.33	71.49 ± 1.62	86.38 ± 0.39
[11], [20]			Vanilla NP	78.17	0.55 (96.5↓)	104.50 (78.1↓)	1936.44 (46.6↓)	71.94 ± 1.68	69.39 ± 2.29	84.68 ± 0.78
			Weighted NP		0.79 (95.0↓)	22.40 (95.3↓)	860.64 (76.3↓)	71.50 ± 0.63	75.05±1.19	84.05 ± 0.65
			RANP-m		0.87 (94.4↓)	13.47 (97.2 ↓)	506.97 (86.0 ↓)	66.70 ± 2.94	62.99 ± 2.38	82.90 ± 0.41
			RANP-f		0.76 (95.1↓)	<u>16.97 (96.5↓)</u>	<u>729.11 (80.0↓)</u>	70.73 ± 0.66	74.50 ± 1.05	85.45±1.06
										p-5
	MobileNetV2	bileNetV2	Full[21]	0	9.47	0.58	157.47		08 ± 0.72 76.68	
			SNIP[18] NP	86.26	3.67 (61.3↓)	0.54 (6.9↓)	155.35 (1.3↓)		78±0.04 75.08	
			Random NP		4.58 (51.6↓)	0.34 (41.4↓)	106.68 (32.3↓)		74±0.36 74.69	
			Layer-wise NP		4.56 (51.8↓)	0.33 (43.1↓)	106.92 (32.1↓)		00 ± 0.36 75.54	
			Vanilla NP	33.15	6.35 (32.9↓)	0.55 (5.2↓)	155.17 (1.5↓)		32±0.79 75.42	
			Weighted NP	55.15	4.82 (49.1↓)	0.30 (48.3↓)	100.33 (36.3↓)		9 ± 0.51 75.72	
			RANP-m		4.87 (48.6↓)	<u>0.27 (53.4)</u>	84.51 (46.3↓)		1 ± 0.41 75.53	
UCF101			RANP-f		4.83 (49.0↓)	0.26 (55.2↓)	88.01 (44.14)		37±0.41 75.75	
[40]	I3D	ours	Full[22]	0	47.27	27.88	201.28		58±1.86 77.35	
			SNIP[18] NP	81.09	30.06 (36.4↓)	26.31 (5.6↓)	195.62 (2.8↓)		38±3.55 78.32	
			Random NP		26.36 (44.2↓)	16.45 (41.0↓)	145.07 (27.9↓)		2±2.52 79.05	
			Layer-wise NP		26.67 (43.6↓)	16.93 (39.3↓)	150.95 (25.0↓)		7±1.99 78.41	
			Vanilla NP	25.32	29.93 (36.7↓)	25.76 (7.6↓)	192.42 (4.4↓)		57±1.46 78.07	
			Weighted NP		26.57 (43.8.1.)	15.56 (44.2.1.)	142.57 (29.2.1.)		9+0.82 79.26	
			RANP-m		26.75 (43.4↓)	<u>14.08 (49.5↓)</u>	130.44 (35.2↓)		1±3.05 77.54	
			RANP-f		26.69 (43.5↓)	13.98 (49.9 ↓)	130.22 (35.3↓)	54.2	27±2.88 79.27	±2.13

All models are trained from scratch for 100 epochs on ShapeNet and UCF101, 200 on BraTS'18. Metrics are calculated by the last 5 epochs. "sparsity" is max parameter sparsity for SNIP NP and max neuron sparsity for others. Overall, our RANP-f performs best with large reductions of main resource consumption (GFLOPs / memory) with negligible accuracy loss.

• **Transferability** with Interactive Models

Pruning a 23-layer 3D-UNet on ShapeNet -> then applied to BraTS'18 training and vice versa.

Manner	ShapeNet	BraTS'18			
Iviannei	mIoU(%)	ET(%)	TC(%)	WT(%)	
Full[5]	84.27±0.21	74.04±1.45	75.11±2.43	<u>84.49±0.74</u>	
RANP-f(ours)	<u>83.86±0.15</u>	71.13 ± 1.43	72.40 ± 1.48	83.32 ± 0.62	
T-RANP-f(ours)	83.25 ± 0.17	72.74 ± 0.69	73.25 ± 1.69	$85.22 {\pm} 0.57$	

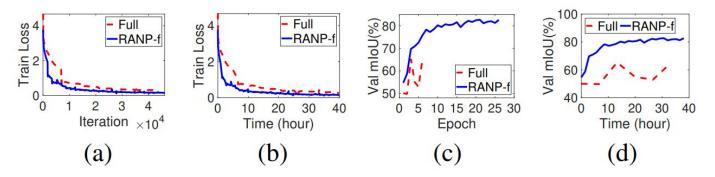
Transfer learning by 23-layer 3D-UNets interactively pruned and trained between ShapeNet and BraTS'18. Accuracy loss from RANP-f to T-RANP-f is negligible. "T": transferred.

• Lightweight Training on a Single GPU

Manner	Layer	Batch	GPU(s)	Sparsity(%)	mIoU(%)
Full	15	12	2	0	83.79±0.21
Full	23	12	2	0	84.27±0.21
RANP-f(ours)	23	12	1	80	84.34±0.21

ShapeNet: a deeper 23-layer 3D-UNet is achievable on a single GPU with 80% neuron pruning.

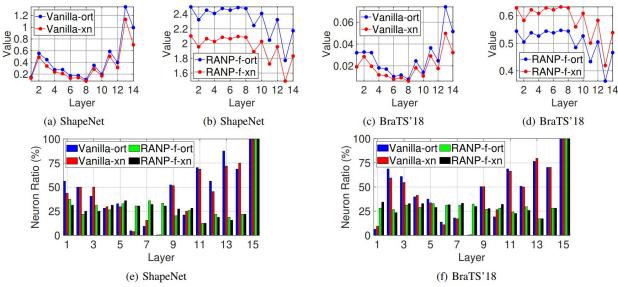
• Fast Training with Increased Batch Size



ShapeNet: a faster convergence on a single GPU with 23-layer 3D-UNet is achievable with increased batch size due to the largely reduced resources by our RANP-f. Batch size is 1 for "Full" and 4 for "RANP-f" Experiments run for 40 hours.

Experiments (appendix)

3D CNNs: failure of orthogonal initialization in signal propagation for neuron balance



(a)-(d) are neuron importance values. (e)-(f) are neuron retained ratios. Vanilla versions (both orthogonal and Glorot initializations) prune all the neuron in layer 8, leading to network infeasibility while our RANP-f versions have a balanced distribution of retained neurons.

"A signal propagation perspective for pruning neural networks at initialization" ICLR 2020

Conclusion

We proposed effective and efficient Resource Aware Neuron Pruning (RANP)

- High effectiveness on resource reductions (50%-95% FLOPs and 35%-80% *memory*)
- High efficiency (single-shot by pruning at initialization)
- Scalability by pruning with a small spatial size and training with a large one
- Transferability by pruning on a dataset and training on another one
- Lightweight training on a single GPU
- Fast training with increased batch size
- Useful for (not limited to) 3D CNNs

Code of RANP is available at <u>https://github.com/zwxu064/RANP.git</u>