
RANP: Resource Aware Neuron Pruning
at Initialization for 3D CNNs

Zhiwei Xu1,3, Thalaiyasingam Ajanthan1, Vibhav Vineet2, Richard Hartley1

1 Australian National University (ANU) and Australian Centre for Robotic Vision (ACRV)
2 Microsoft Research, Redmond, USA
3 Data61, CSIRO, Canberra, Australia

(Oral Presentation)

Problem Setup
Generally, 3D CNNs suffer from

● Expensive computational complexity
● High requirement of GPU memory
● Infeasible for large-scale applications
● Unfriendly to resource-limited devices

=> Network pruning is a popular and high-efficient approach.

Existing Solutions
Possible adoptions from 2D CNN pruning methods

● Parameter pruning: sparse filters but no significant resource reductions
● Neuron pruning: prune-retrain manner and at test time

Existing 3D CNN pruning methods

● Sparse convolution: specified to sparse data, not generalized to dense data
● Neuron / channel pruning: slow due to the prune-retrain manner

Our Solution (RANP)
● Large reductions of FLOPS and memory of 3D CNNs

50%-95% FLOPs reduction and 35%-80% memory reduction

● Single-shot pruning at initialization
● Scalability by pruning with a small spatial size and training with a large one
● Transferability by pruning on a dataset and training on another one
● Lightweight training on a single GPU
● Fast training with increased batch size
● Easy adaption to 2D CNNs

Our Solution (RANP)
Brief introduction of SNIP (aims at 2D parameter pruning)

 Parameter importance by connection sensitivity with relaxed binary masks

 Then, retain top-k parameters by top-k largest parameter importance.

Objective function:

Parameter importance:

data pointmini-batch

parameter number

masks on connection sensitivity

“SNIP: Single-shot network pruning based on connection sensitivity”, ICLR 2019

Our Solution (RANP)
Drawbacks of SNIP for 3D CNNs

● Sparse filters by pruning parameters cannot yield significant resource
reductions while huge resource consumption tackles the usage of 3D CNNs.

● A sparse filter cannot reduce the number of features of hidden layers, which
cause main memory consumption in 3D CNNs, unless all parameters in a
neuron are pruned which is uncertain.

Our Solution (RANP)
Neuron importance

Neuron function with activation:

With a neuron mask (post-activation):

neuron number at layer l

vanilla NI:

weighted NI:

resource aware NI:

layerwise resource constraint (FLOPs or memory)

(post-activation)

Experiments
We evaluated RANP on two 3D tasks

● 3D semantic segmentation

Datasets: sparse data: ShapeNet (sparse point clouds)

 dense data: BraTS’18 (medical images)

Models: 3D-UNets (15-layer and 23-layer)

● Video action classification

Dataset: UCF101

Models: MobileNetV2 and I3D

Experiments
● Effects of resource constraint on balancing layerwise neuron importance

From vanilla NP to weighted NP to RANP NP (weighted NP with resource constraint of FLOPs).

Experiments
● Pruning ability & neuron sparsity

With minimal accuracy loss, much more resources can be reduced with (w) reweighting by
RANP-f than without (w/o) it by vanilla NP. (a)-(d) are resources reductions (w) and (w/o)
reweighting; (e)-(h) are accuracy by pruning sparsity.

Experiments
● Strong pruning ability of RANP compared with others

All models are trained from
scratch for 100 epochs on
ShapeNet and UCF101,
200 on BraTS’18. Metrics
are calculated by the last 5
epochs. “sparsity” is max
parameter sparsity for
SNIP NP and max neuron
sparsity for others. Overall,
our RANP-f performs best
with large reductions of
main resource
consumption (GFLOPs /
memory) with negligible
accuracy loss.

Experiments
● Transferability with Interactive Models

 Pruning a 23-layer 3D-UNet on ShapeNet -> then applied to BraTS’18 training

 and vice versa.

Transfer learning by 23-layer 3D-UNets interactively pruned and
trained between ShapeNet and BraTS’18. Accuracy loss from RANP-f
to T-RANP-f is negligible. “T”: transferred.

Experiments
● Lightweight Training on a Single GPU

ShapeNet: a deeper 23-layer 3D-UNet is achievable on a single GPU
with 80% neuron pruning.

Experiments
● Fast Training with Increased Batch Size

ShapeNet: a faster convergence on a single GPU with 23-layer 3D-UNet is
achievable with increased batch size due to the largely reduced resources by our
RANP-f. Batch size is 1 for “Full” and 4 for “RANP-f”. Experiments run for 40 hours.

Experiments (appendix)
3D CNNs: failure of orthogonal initialization in signal propagation for neuron balance

(a)-(d) are neuron importance values. (e)-(f) are neuron retained ratios. Vanilla versions (both
orthogonal and Glorot initializations) prune all the neuron in layer 8, leading to network
infeasibility while our RANP-f versions have a balanced distribution of retained neurons.

“A signal propagation perspective for pruning neural networks at initialization” ICLR 2020

Conclusion
We proposed effective and efficient Resource Aware Neuron Pruning (RANP)

● High effectiveness on resource reductions (50%-95% FLOPs and 35%-80%
memory)

● High efficiency (single-shot by pruning at initialization)
● Scalability by pruning with a small spatial size and training with a large one
● Transferability by pruning on a dataset and training on another one
● Lightweight training on a single GPU
● Fast training with increased batch size
● Useful for (not limited to) 3D CNNs

Code of RANP is available at

https://github.com/zwxu064/RANP.git

- Q&A -

https://github.com/zwxu064/RANP.git

